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a b s t r a c t

A correct model of media with a microstructure (according to Mindlin’s definition), which is defined
by the presence of free strains and generalizes the well-known Mindlin, Cosserat and Aero–Kuvshinskii
models, is proposed. The correctness of the formulation of the model is determined by using a “kinematic”
variational principle, based on a systematic formal description of the kinematics of media, formulation
of the kinematic constraints for media of various complexity and the construction of the corresponding
strain potential energy using a Lagrange multiplier procedure. A system of constitutive relations is estab-
lished, and a consistent statement of the boundary-value problem is formulated. It is shown that the
model of a medium investigated not only reflects scale effects that are similar to cohesive interactions,
but also provides a basis for describing a broad spectrum of adhesive interactions. An interpretation of the
physical characteristics responsible for non-classical effects is proposed in the context of an analysis of
the physical aspects of the model, and a description of the spectrum of adhesion mechanical parameters
is given. ©2009.

© 2009 Elsevier Ltd. All rights reserved.

According to the previously proposed classification1 of media with different defect fields, the model of a strained medium investigated
here is a model of a medium with conserved dislocations. Applied versions of this model have led to explanations for numerous well-known
non-classical phenomena in the mechanics of materials. For example, it has been shown that they enable researchers to successfully model
the variation of the mechanical properties of nanocomposites with variation of the size of the reinforcing nanoparticles at a constant
volumetric content,2,3 as well as the dependence of the mechanical properties of thin films on their thickness.4,5 Scale effects in the
mechanics of materials associated with cohesive interactions have been modelled,6-9 and a description of non-singular cracks with a
flare angle equal to zero, which essentially gives a formal mathematical proof of Barenblatt’s hypothesis regarding the existence of a
cohesive field, has been proposed. Consideration of scale effects has enabled a consistent theory of an interfacial layer to be constructed
that simulates local effects on boundaries between contacting phases.2,3,7,8 A mathematical proof of the equivalent matrix hypothesis,
the equivalent inclusions hypothesis, etc. has been obtained within this theory. Analytical estimates of the geometric and mechanical
properties of the interfacial layer from classical and non-classical mechanical characteristics of the phases have been obtained.

A general version of a model of media with conserved dislocations (for which the dislocation flux through a closed surface of any volume
is equal to zero), which generalizes the well-known Mindlin,10,11 Cosserat,12 Tupin13 and Aero–Kuvshinskii14 models, will be developed
in this paper. A variational formulation of models based on the “kinematic” variational principle, previously formulated in Refs 15-17
and further developed in Refs 6-9, will be used. It will be shown that the spectrum of internal interactions is completely specified by the
system of kinematic constraints realized in the medium. Therefore, the kinematic relations in a model of a medium, which enable us to
formulate the kinematic constraints within the principle of possible displacements, will be investigated in the first stage of formulating the
model. Note, for example, that in the classical theory of elasticity, the kinematics is completely specified by symmetrical Cauchy relations.
In moment models of media with hindered rotation, the kinematics is assigned by a set of Cauchy relations and expressions that define
derivatives of the rotation vector in terms of the displacement vector (see Refs 9, 11, 17, etc.). In the first stage, a list of arguments of the strain
potential energy (for reversible processes) and the Lagrange functional will be established.17 The general form of the constitutive equations
corresponding to the general form of the potential energy will be presented, and these equations will be analysed, enabling us to introduce
some simplifications associated with consideration of reported experimental data. A variational formulation of the boundary-value problem
will be written as a result.
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1. The kinematic model

We will write the well-known relations for the components of the displacement vector Ri, which are obtained by formal integration of
the asymmetrical Cauchy relations dij = Ri,j:

(1.1)

Here �in denotes the components of the strain deviator tensor, � denotes the volumetric strain, and �k denotes the components of the
elastic rotation vector (pseudovector).

The quadratures of asymmetrical Cauchy relations (1.1) can be regarded as relations that specify the vector potential with the compo-
nents Ri for a distortion tensor with the components dij.

We write the conditions for the Cauchy relations to be integrable relative to the displacement vector

(1.2)

We will call homogeneous equations (1.2) homogeneous Papkovich equations because Papkovich was the first to appreciate the impor-
tance of these relations in the hierarchy of kinematic constraints in continuum mechanics. When equalities (1.2) hold, the displacement
vector with the components Ri is the vector potential for the distortion tensor with the components d0

ij
:

(1.3)

Note that the differential form dRi = d0
ij
dxj is a total differential.

Now consider the heterogeneous Papkovich equations

(1.4)

The quantity �ij specifies the incompatibility of the displacements. Note that here the �ij are components of a second-rank pseudotensor,
since the sign of each component changes when the right-hand set of three unit vectors is replaced by the left-hand set. In this case the
displacement vector can be formally introduced as the difference between the displacements of two infinitely close points using the
relation dDi = dijdxj. However, here the linear differential form dDi will no longer be a complete differential, and the equation written for
the displacements Di will not be integrable. We will say that a vector with the components Di specifies a defect displacement field. The
continuous displacement “incompatibility” tensor with the components �ij is a dislocation density tensor18 and obeys the differential
conservation law

The solution of heterogeneous equations (1.4) can be represented in the form of the sum of the solutions of the homogeneous equations
(with the superscript 0) and the partial solution of heterogeneous equations (1.4) (with the superscript �);

The solution of homogeneous equations (1.2) can be written in terms of displacements in the form of the asymmetrical Cauchy relations
d0

ij
= Ri,j . We will represent the asymmetrical tensor with the components d0

ij
in the form of an expansion into a deviator tensor with the

components �0
ij
, a spherical tensor with the components �0�ij and an antisymmetrical tensor with the components �0

k
Эijk. In turn, we will

write the components of the antisymmetrical tensor in terms of the components �0
k

of the rotation pseudovector

(1.5)

where

There is no continuous vector potential for a particular solution of heterogeneous equations (1.4), i.e., it is impossible to represent the
vector potential in the form (1.3). Only the following representation can be written for it:

Clearly, along with d�
ij

, the parameters ��
ij

, ��
k

and �� can be regarded as independent “generalized variables.”
The general solution of heterogeneous equations (1.4) can be written in the symmetrised form

Here
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Using Cosserat’s terminology for the kinematics of media, we will call �0
k

= −Ri,jЭijk/2 hindered rotation, and we will call ��
k

free
rotation or spin. Similarly, we will call �0

ij
and �0 hindered strains, and we will call ��

ij
and �� free strains. Accordingly, we will introduce

the definitions of the components of the free distortion tensor d�
ij

and the hindered distortion tensor d0
ij
.

The heterogeneous relations (1.4) and the Cauchy relations for hindered distortion (1.5) describe the kinematics of media with
dislocation-type defects. We will call such media models Papkovich media or first-rank imperfect media.1

The kinematics of such media has the following structure.

10. The defect displacement field Di is the result of the superposition of two fields, viz., the continuous field D1
i

= Ri (the displacements
Ri) and the displacement discontinuity field D2

i
(the dislocation field):

20. The displacement discontinuity field D2
i

(the dislocation field) is expressed in integral form in terms of the free strain and spin fields
according to formulae similar to the Cesàro formulae:

However, unlike the Cesàro formulae, here the integrand does not satisfy the integrability conditions:

(1.6)

i.e., the curvilinear integral depends on the integration path, and, therefore, the vector field D2
i

will not be continuous. Three types of
dislocations ((D2

i
)
�

, (D2
i
)
�

and (D2
i
)
�

) can be defined:

(1.7)

30. The Cauchy relations generalized to imperfect media with dislocations, hold:

40. The displacement “incompatibility” tensor with the components �ij is the dislocation tensor:18

Three types of dislocation tensors with components related to ��
ij

, ��
k

and �� , respectively, can be defined:

(1.8)

The quantities (�ij)�, (�ij)� and (�ij)� in expansion (1.8) are sources of three types of dislocations, viz., �, � and � dislocations, respectively.
50. A differential dislocation conservation law that follows from the definition of the dislocation tensor holds, since

60. The integral analogue of the dislocation conservation law clearly has the form

Note that the flux of the tensor with the components �ij through the plane in which the planar contour chosen lies can be selected as
a measure of the defect (dislocation) content:

Here F is an arbitrary surface stretched onto the planar contour.
In other words, the flux of the tensor with components �ij through any surface stretched onto the planar contour is the same. No new

dislocations are generated. For just this reason, here we can refer to the models as models of a medium with conserved dislocations.
If follows from the foregoing analysis (see also Ref. 1) that the concept of a defect in a continuous medium is complex and can be

specified using a set of tensor objects. For dislocations such a set consists of the “incompatibility” pseudotensor with components �ij, the
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second-rank free distortion tensor with components d�
ij

and the discontinuous displacement vector (first-rank tensor) with components

D2
i
. The corresponding Burgers vector can also be included here. Its components can be obtained from equalities (1.7) by juxtaposing the

initial point M0 and the final point Mx of the planar integration path (nn denotes the components of the constant vector of a normal to the
plane of the integration path):

where sj denotes the components of a unit vector that is tangential to the planar contour, nn denotes the components of the vector of a
unit normal to the plane of the path, and the vectors with the components sj, �m and nn form a set of three unit vectors that are attached
to the current point on the contour.

A kinematic analysis of the model enables us to find the complete set of generalized “coordinates” and “velocities” that are needed to
formulate the functional and the corresponding variational equation of the model of media. In the case under consideration of a Papkovich
medium with a system of conserved dislocation defects, the continuous parameters Ri and d�

ij
will be the generalized coordinates, and the

corresponding tensor parameters with the components d0
ij

and �ij should be regarded as the “velocities” of the kinematic state.
We also note that as a result of the kinematic analysis performed, a new natural classification of dislocations is essentially proposed. A

classification of dislocations based on an invariant definition of slip dislocations

and rupture dislocations

as the corresponding projections of the Burgers vector was previously proposed.18 Note that such a classification does not reflect the energy
independence of the kinds of dislocations identified.

Here we propose a different classification, which eliminates this drawback. We write the expression for the Burgers vector

Therefore, in accordance with the proposed classification, the quantities ��
ij

will be called � dislocations, the quantity �� will be called

� dislocations, and the quantities ��
k will be called � dislocations. It will be shown below that the potential energies of the free change in

shape �22��
ij

��
ij

, the free change in volume (2 �22 + 3�22) �� ��/6, and twisting 	22��
k

��
k

do not have cross terms. Therefore, the potential
energies of the kinds of dislocations introduced are additive, and they can exist in isolation and independently of other dislocations.

2. Variational formulation of the model

The “kinematic” variational principle for constructing models of media was formulated in Refs. 15-17. According to this principle, the
kinematic constraints in the medium are determined, and the possible work of the internal forces is postulated as the possible work of the
reactive force factors on the kinematic constraints that are inherent in the medium. The possible work of the internal forces is represented
in the form of the linear form of the variations of their arguments. This form can be integrated for conservative media. The potential energy
is determined as a result. For linear media the potential energy is a quadratic form of its arguments.

For media with conserved dislocations, such kinematic constraints are the inhomogeneous Papkovich equations for free distortion
and the homogeneous Papkovich equations for hindered distortion. The homogeneous Papkovich equations for hindered distortion can
be integrated in general form. Their solutions are asymmetrical Cauchy relations. Thus, in accordance with the “kinematic” variational
principle, the virtual work of the internal forces should be represented in the form

(2.1)

Here �U is the virtual work, which, in the general case, is the linear form of the variations of its arguments (which is not necessarily
integrable, as occurs for media with dissipation (see Ref. 19)), and the 
ij and mij are the components of tensors of Lagrange multipliers,
which have the physical meaning of the reactive force factors that ensure that the corresponding kinematic constraints hold.

We represent �U (2.1) as the linear form of the variations of its arguments. Using integration by parts in the terms containing derivatives,
we obtain

(2.2)

We shall confine ourselves to media without energy dissipation (models of media with dissipation were previously considered19). Then
there is a potential U (potential energy) that is such that the virtual work �U (2.2) will be the variation of this potential:
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Henceforth we will exclude the displacement vector from the lists of arguments for the potential energy densities. Then the generalized
model of a medium with scale effects under consideration will not contradict the existing experimental data in the special case of classical
theory. This question will be discussed further below. As a result, we obtain

(2.3)

Taking into account the list of arguments in equality (2.3) and calculating the variation �U in the volume, we obviously obtain

(2.4)

Formulae (2.4) should be interpreted as generalized Green’s formulae for bulk and surface force factors. These relations enable us to
write the variation of the Lagrangian

(2.5)

and to find the corresponding Euler equations.

3. Constitutive relations. Physical interpretation of the generalized elastic constants

Consider again the potential energy densities in the bulk and on the surface. We will confine ourselves to considering physically linear
media. Then UV is defined as the quadratic form of its arguments:

(3.1)

The following fully justified simplifications were introduced when deriving this equality.

10. In the expression for the potential energy density (3.1) the coefficient in front of the term CijRiRj is assumed to be equal to zero.
Otherwise, the operator of the balance equations would have the form of the Helmholtz equations, ruling out the existence of homogeneous
stress-strain states.
20. The coefficients in front of all the remaining bilinear components, that include the displacement vector as a cofactor, were also
assumed to be equal to zero. Otherwise, in the absence of the term containing the quadratic form for the displacement vector CijRiRj, the
bulk potential energy density would not be positive-definite.

The structure of the elastic modulus tensors Cpq
ijnm

in equality (3.1) is specified by their expansion in fourth-rank isotropic tensors
constructed as the product of a pair of Kronecker tensors with all possible permutations of the subscripts:

(3.2)

In order to give a physical interpretation of the elastic modulus tensors in equalities (3.1) and (3.2), we will analyse the corresponding
fractions of the potential energies. Consider the bulk potential energy density C11

ijnm
d0

ij
d0

nm, which is associated with invariants of the hindered

distortion tensor with the components d0
ij

= Ri,j . We will represent the second-rank kinematic displacement tensor d0
ij

in the form of a tensor
expansion into deviator, spherical and antisymmetrical parts:

(3.3)

Then we obtain the equality

(3.4)

The first term on the right-hand side of the last equality specifies the potential energy of the change in shape

Therefore, we will call the corresponding multiplier the shear modulus for hindered distortion. Similar transformations also hold for
the remaining terms in the bulk potential energy density 2C12

ijnm
d0

ij
d�

nm, C22
ijnm

d�
ij

d�
nm, C33

ijnm
�ij�nm. As a result, we can define analogues of the

shear modulus �pq for the deviators of all the corresponding kinematic factors

(3.5)

The second term on the right-hand side of equality (3.4) specifies the potential energy of the change in volume
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Therefore, we will call the corresponding multiplier the bulk compression modulus for hindered distortion. Similarly, we introduce the
bulk compression moduli 2 �pq + 3�pq for the spherical tensors of all the remaining kinematic factors

(3.6)

The third term on the right-hand side of equality (3.4) corresponds to the potential energy of twisting

It specifies the asymmetry in the stress tensor and does not have classical analogues. We will call the corresponding multiplier the third
Lamé coefficient for hindered distortion (d0

ij
). Accordingly, in the general case the analogues of the third Lamé coefficient 	pq are defined

by the formulae

(3.7)

Solving system of equations (3.5)–(3.7) for the coefficients Cpq
j

(j = 1, 2, 3), taking equality (2.2) into account, we obtain

(3.8)

Finally, we write the following expression for the potential energy density

Note that the part of the strain energy density that is associated with the dislocation tensor (with the components C33
ijnm

�ij�nm) specifies
the rapidly varying local part of the potential energy of the dislocations. The remaining part of the strain energy density varies slowly and
is specified as the sum of the potential energies of three types of dislocations: �, � and � dislocations. The slowly varying part of the strain
energy (with the exception of C33

ijnm
�ij�nm) does not contain cross terms from the types of dislocations just indicated and is an additive form

relative to the components of the free distortion. For approximate estimates of the defect content in media when integral characteristics
are used, the local, rapidly varying part of the energy can probably be neglected.

Note that the question of the material objectivity of the asymmetrical model of a medium whose potential energy density contains the
terms 	11�0

nm�0
nm (see also equality (3.4)) has been discussed repeatedly and was described in detail in Refs 7 and 17.

In the general case the bulk potential energy density does not contain cross terms corresponding to the free change in shape (��
nm), the

change in volume (��), and twisting (��
k

) for small values of the constants C33
ijnm

, which correspond to scale effects (their dimensions differ
from the dimensions of Young’s modulus by the square of the length). This fact served as proof of the correctness of the new classification
of the different types of dislocations.

We will write the generalized Hooke’s law equations (2.4) for the bulk force factors in the form

(3.9)

Note that the generalized momenta 
ij, pij and mij in equality (3.9) depend not only on the generalized velocities Rn,m and �ij, but also
on the generalized coordinates d�

ij
. For this reason, different interpretations of the “non-classical” components in the generalized Hooke’s

law (3.9) are possible.
On the one hand, the stress tensor can be redefined by eliminating the terms containing the free distortions d�

ij
on the right-hand

sides of equalities (3.9). The combination C22
pqij

�ij − C12
pqij

pij can then serve as the components of the generalized stress tensor. The other

linearly independent combination C21
pqij

�ij − C11
pqij

pij will then have the physical meaning of the reaction of the generalized Winkler base to

the generalized displacements d�
ij

.
Under another interpretation of the constitutive relations it should be acknowledged that along with the stress tensor with the com-

ponents 
ij there are additional force factors, viz., the “dislocation” stresses pij, in such media. This alternative is more traditional11 and
preferable. We offer the following arguments. We assume that C12

ijnm
= 0. As will be shown below, in this case the general boundary-value

problem breaks down into the boundary-value problem for the displacements Ri and the boundary-value problem for the free distortion
d�

ij
. Then the boundary-value problem for the displacements under the additional assumption that 	11 = 0 (the theory of elasticity with a

symmetrical stress tensor) is identical to the classical theory of elasticity. The force factor 
ij takes on the meaning of classical stresses.
Accordingly, the force factor pij takes on the meaning of the Winkler reaction in the balance equations of the moment stresses. When
C12

ijnm
/= 0, mutual perturbation of the classical displacement field and the pure dislocation states occurs. The cross terms in the Hooke’s law

equations for 
ij and pij reflect these perturbations. The same arguments clearly lead to an algorithm for solving the general boundary-value
problem by the method of successive approximations.

The situation with the surface potential energy density is more complex. For a smooth surface there is always a naturally identifiable
direction, namely, a normal to the surface. The Hooke’s law equations for the internal force factors on the surface should have a transversal
isotropic character, and, as a result, the kinematic factors associated with a normal to the surface and with the tangential plane will appear
in these Hooke’s law equations with different values.

We will examine the surface strain energy density in greater detail. Consider the expression for the surface part of the possible work.
The first term in it corresponds completely to the classical representation. It appears as a result of integration by parts of the expression∫ ∫ ∫

[
ij�(Ri,j)]dV in equality (2.1). The second term in the expression for the surface part of the possible work (2.2), (2.3) is non-classical.
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Its appearance is due to the kinematic variational method for constructing the model and is associated with the surface adhesion energy
UF. We will examine this term in greater detail. We have

(3.10)

where �in = (�in − ninn) denotes the components of the “planar” Kronecker tensor.
We note that npnqЭpqj = 0, since it is the convolution of the symmetrical tensor whose components are npnq with the antisymmetrical

tensor whose components are Эpqj. Therefore, the work of the moment stresses (3.10) on the surface of the body is performed not on all
nine components of the free distortion tensor d�

in
, but only on six of them, d�

im
�pm:

(3.11)

In the general case the strain energy density (the adhesion potential energy) on the body surface has the form

(3.12)

The constitutive relations on the body surface are specified by equalities (2.4).
Note that the potential energy density does not depend on the displacement vector. Otherwise, the variational formulation would lead

to systematic errors in the static boundary conditions in the classical solution, which would contradict existing experimental data.
It is noteworthy that relations (3.11) enable us to refine the list of arguments of the surface potential energy density (3.12). This refined

list of arguments is now specified by six “planar” components of the free distortion tensor d�
im

�pm: UF = UF (d�
ik

�kj). As a result, the complete
correct expression for the variation of the Lagrangian is distinguished from (2.5) by the replacement of ıd�

in
by ıd�

ik
�kn.

Hence it follows that there are nine boundary conditions at each non-special point for the model of media under investigation. An
analysis of the resolvent equations and the boundary-value problem as a whole enables us to show that the total order of the resolvent
equations in the components of the displacement vector and the potentials for the components of the free distortion is equal to 18. Therefore,
the mathematical formulation of the model investigated is consistent, since there are nine boundary conditions for the eighteenth-order
boundary-value problem.

The structure of the adhesive modulus tensor Aijnm is specified by its expansion in the fourth-rank tensors constructed as all possible
products of pairs of “planar” Kronecker tensors and the tensors formed by products of the components of the vectors of the unit normal
of the form ninj with all possible permutations of the subscripts. In addition, we will take into account that the adhesion potential energy
should not depend on the following components of the free distortion tensor: d�

ij
nj . Only in this case do the classical, natural boundary

conditions on the surface of the body for the stresses remain unchanged. This does not introduce contradictions in the special case of the
transition to the classical model of a medium and is consistent with numerous experimental data. It can be shown that in such a case the
overall structure of the components of the adhesion modulus tensor has the form

(3.13)

Here the Ai are constants.
We will examine the strain energy density on the surface and give a physical interpretation of the adhesion components of the strain

energy taking into account relations (3.11) and (3.13). The surface potential energy will be a quadratic function only of the components of
the free distortion of the form d�

ik
�jk = d�

ik
(ıjk − njnk). This is important for constructing a consistent theory and will be discussed below.

Were represent the free distortion in the form of a tensor expansion in the “planar” deviator with the components

the “planar” spherical tensor with the components

the “planar” antisymmetrical tensor with the components

and the “planar” flexural rotation angle vector of the surface with the components

The left superscript “2” stresses the fact that the corresponding components of the free distortion tensor are calculated on the surface
of the body. As a result, we obtain

(3.14)

Taking into account equality (3.13), we can see that the surface free distortion tensor represented in the form of expansion (3.14),
converts UF into the canonical form

(3.15)
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Comparing the first three terms on the right-hand side of equality (3.15) with the corresponding terms in the expression for the bulk
potential energy in the planar formulation, we can draw analogies between the Lamé coefficients and the adhesion moduli.

We introduce the following natural definitions of the adhesion moduli.

A2 is the adhesion analogue of the shear modulus: A2 = �F;
A1 is the adhesion analogue of the second Lamé coefficient: A1 = �F;
A4 is the adhesion analogue of the third Lamé coefficient: A4 = 	F;

A3 = �F is the adhesion analogue of the Winkler stiffness of the “internal sublayer” of the surface, which gives rise to a reactive torque
proportional to the free rotations of elements of the midline of the surface (presurface layer) in two orthogonal directions.

Accordingly, the first term in the expression for the potential energy (3.15) is the energy of the change in the “planar volume” of the
surface. We will call this energy the surface tension energy. The theory of surface tension is fairly well known outside of continuum
mechanics as an autonomous empirical theory. Thus, it can be asserted that the surface tension is a specific effect of the theory developed
here.

The second and third terms in expression (3.15) specify the energy of the change in shape and the energy of twisting in a plane
tangential to the surface, respectively. From the point of view of identifying physical constants of adhesion, we can jointly take into
account the energies of the change in shape and twisting within test problems that simulate the static friction of two half-spaces with an
ideally smooth contact surface. The problem of extruding a nanofiber from a “contracted” die can be proposed as the first test problem,
for which only the energy of the change in shape is realized. By virtue of the axial symmetry of this problem, the surface of the nanofiber
does not undergo torsional strains. The solution of such a problem establishes the relation between the static friction coefficient and the
adhesion modulus. The antiplanar contact problem can be considered as the second problem. For this problem, a change in shape of the
contact surface apparently occurs along with the twisting. The solution of such problems provides the possibility, in principle, of setting
up corresponding experiments and to determine the adhesion moduli A2 = �F and A4 = 	F.

The fourth term specifies the bending energy of the surface, since it is the strain energy of the “internal Winkler springs.” The problem
of the behaviour of a medium that is in the gap between two half-spaces with ideally smooth surfaces and under pressure from the surfaces
can be a test problem here. The use of a non-classical adhesion model here enables us to simulate two phenomena, viz., the existence of a
meniscus on the surface of the medium and a phenomenon that is associated with the interpretation of the difference between the mean
elongation of the medium in the gap found using the non-classical model and the analogous result obtained using the classical model.

4. The fundamental role of the cross tensor of the moduli

Consider again the constitutive relations (2.4) and (3.9). After setting C12
ijnm

= 0 in them, we obtain

(4.1)

It is seen that in this case the overall boundary-value problem breaks down into two independent boundary-value problems. Taking
into account relations (3.9) and (4.1), we obtain the separate problem of determining the displacement vector

(4.2)

The problem of determining the free distortion tensor can also be formulated separately:

Therefore, the boundary-value problem relative to the components of the free distortion tensor is homogeneous in this case. This
corresponds to the absence of dislocations. As a result, when C12

ijnm
= 0, the model reduces to the model of a dislocation-free medium.

The inhomogeneous subsystem of force balance equations (for 	11 = 0) and boundary-value problem (4.2) are identical as a whole to the
boundary-value problem of the classical theory of elasticity. The arguments presented enable us to give the following natural interpretations
to the elastic moduli �11, 2 �11 + �11 and 	11:

�11 is the shear modulus of a medium that is free of � dislocations, �11 = G;
2�11 + 3�11 = K is the bulk compression modulus of a medium that is free of � dislocations, Young’s modulus is then defined by the formula
2�11 + �11 = E;
	11 can be interpreted as the “torsional modulus” of a medium that is free of � dislocations: 	11 = 	.

We will next examine the equations obtained from variational equation (2.5). In order to find the generalized balance equations in
displacements, we should set the multipliers in front of the variations of the displacements and in front of the variations of the components
of the free distortion tensor equal to zero. We will call the first group of equations force balance equations. We will call the second group
(the second-rank tensor equation) torque balance equations. The system of generalized balance equations can be written in the kinematic
variables Ri and d�

ij
using the generalized Hooke’s law equations (3.9). From this system of equations we can isolate a subsystem of equations

that generalize the Lamé balance equations of the classical theory of elasticity and are written in terms of a displacement vector with the
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components Ri:

Here we use the following notation

(4.3)

The quantities E1 and G1 can clearly be interpreted as the elastic moduli of a medium with dislocations; the parameters l2G and l2E are scale
characteristics of the medium, and they have the dimension of the square of the length.

Relations (4.3) lead directly to the inequalities

(4.4)

Crucial relations (4.3) and (4.4) reveal the fundamental role of the cross tensor of the moduli. In addition, equalities (4.3) establish the
exact relation between the elastic moduli of a medium that is dislocation-free, viz., (2�11 + �11) and (�11 + 	11), and the elastic moduli of
a medium with dislocations, viz., E1 and G1.

It follows from inequalities (4.4) that the moduli of a medium with dislocations are always smaller than the elastic moduli of a medium
that is dislocations-free. Equality occurs only when �12 = 0 and �12 = 0 (C12

ijnm
= 0), and a medium with conserved dislocations degenerates

into a classical medium that is dislocations-free (when 	11 = 0).
It is noteworthy that the dimensions of the moduli �33, �33, 	33 differ from the dimensions of �11, �11, 	11, �12, �12, 	12 and �22, �22,

	22 by the dimension of the square of the length. Thus, consideration of the contribution of the invariants of the dislocation pseudotensor
C33

ijnm
�nm�ij in the expression for the potential energy inevitably leads to scale effects in the bulk. We also note that the dimensions of the

adhesion moduli differ from the bulk moduli by the dimension of length. Thus, consideration of the adhesion component in the expression
for the potential energy leads to modelling of the scale effects on the surface.

As a whole, the generalized model of continuum mechanics presented is a theoretical model, in which surface tension, the static friction
between two bodies with an ideally smooth contact surface, a meniscus, wettability and capillarity are modelled as specific effects within
a single continuum description. All these specific effects are united by one characteristic feature, i.e., they are scale effects in continuum.

5. Summary and conclusions

A complete and correct model of media with conserved dislocations has been given on the basis of the kinematic variational
approach.2-4,6-9,17 Special attention has been focused on the analysis of the kinematic relations, because in a variational description the
kinematics of the medium completely determines the system of internal interactions in the bulk and on the surface of the body under
consideration. A new classification of dislocations, which enables us to identify three types of dislocations, viz., �, � and � dislocations, has
been proposed on the basis of the kinematic analysis conducted.

This classification has enabled us to propose a new kinematic interpretation for dislocations, which reflects the relation of dislocations
to a change in shape �, to a change in volume � (porosity) and to twisting � (rotations or spins). The proposed classification actually enables
us to predict special cases of dislocations in which only one or two types of dislocations predominate in the medium.

For example, dislocations generated only by free rotations ��
k

can be predominant in a medium with distributed defects. Then we
obtain the “classical” version of the Cosserat model of a medium, in which ��

ij
= 0, �� = 0, and the free distortion tensor is specified by the

relation d�
ij

= −��
k

Эijk, as a special case of the general model.
A porous medium can also be regarded as a special case of the general model. Dislocations generated only by a free change in volume

�� predominate in a porous medium. Then for a porous medium with the four degrees of freedom Ri, �� we have

Finally, a medium with the eight degrees of freedom Ri, ��
ij

is also a special model with one predominant type of dislocations. Here

dislocations generated only by a free change in shape ��
ij

predominate. In this case we clearly have d�
ij

= ��
ij

.
The existence of media with two types of dislocations can be predicted in a similar manner. A model of such a medium, in which the

dislocations generated by a free change in shape ��
ij

were neglected, was previously considered.2-4,7 A continuum version of the theory
of interfacial interactions was constructed on its basis. With this theory, well-known scale effects in the mechanics of finely dispersed
composites that are specified by local cohesive and adhesive interactions could be modelled and explained. The classification proposed in



608 P.A. Belov, S.A. Lurie / Journal of Applied Mathematics and Mechanics 73 (2009) 599–608

this paper enables us to consider one more special case of media in which either �� (non-porous media) or ��
k

(zero-spin media) can be
neglected. As far as we know, such media have not yet been investigated.

The proposed classification has also been substantiated from the physical point of view, since it reflects the physical meaning of
the different types of dislocations. For example, it was shown that these types of dislocations, viz., �, � and � dislocations, make up
corresponding, mutually independent component fractions of the main, slowly varying part of the strain energy density. These fractions
of the potential energy do not have cross terms. Thus, there is additivity in the expansion of the slowly varying part of the strain energy
density relative to the three different types of dislocations. The presence of a non-classical, non-local component part of the potential
energy, which is associated with dislocation defects, is highly unexpected for a gradient model, such as a model of media with a system of
distributed dislocations. Finally, it should be noted that the kinematics of the model examined and the proposed classification are entirely
consistent with the general tenets of the geometrical theory of defects previously derived in Ref. 1.

The use of a systematic variational approach in this paper and the detailed analysis of the boundary conditions has enabled us to
formulate a consistent and harmonious boundary-value problem for media with conserved dislocations with nine boundary conditions
at each non-special point on the surface. It should be recalled that consistency of the mathematical formulation is always achieved as a
result of a systematic variational formulation of the problem. The order of the problem is, in fact, specified by the number of independent
boundary conditions. We noted that the theory proposed in this paper is fairly complete as a theory of media with a continuous field
of conserved dislocations, although it formally corresponds to a more specific model compared with the theory of media with Mindlin
microstructures.11 In Mindlin’s theory11 the structure of the surface potential energy density corresponding to adhesive interactions was
not investigated at all, and no analysis of the function of these surface interactions was given.

Finally, it should be noted that the spectrum of scale effects in the volume and on the surface is taken into account within the proposed
model. In fact, consideration of the invariants of the dislocation pseudotensor C33

ijnm
�nm�ij in the expression for the potential energy

inevitably leads to scale effects in the volume. On the other hand, consideration of the adhesion energy in the expression for the potential
energy leads to modelling of scale effects on the surface, since the dimension of the tensor with the components Aijnm differs from the
dimension of Young’s modulus. The generalized model of continuum mechanics presented can obviously be regarded as the first correct
theoretical model in which different special scale effects (cohesive interactions, surface tension etc.) in the volume and on the surface are
modelled within a single continuum description.
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